InterviewSolution
| 1. |
If x = 3 + 2√2, then the value of \(x^2 + \frac{1}{x^2}\) is:1. 342. 303. 364. 32 |
|
Answer» Correct Answer - Option 1 : 34 Given: x = 3 + 2√2 Formula used: (a2 – b2) = (a – b)(a + b) Calculation: x = 3 + 2√2 Squaring on both side x2= (3 + 2√2)2 x2 = 32 + 2 × 3 × 2√2 + (2√2)2 x2= 9 + 12√2 + 8 x2= 17 + 12√2 ----1 To find \({x^2} + \frac{1}{{{x^2}}}\) \({x^2} + \frac{1}{{{x^2}}}\; = \;17{\rm{\;}} + {\rm{\;}}12\sqrt 2 + {\rm{\;}}\frac{1}{{17{\rm{\;}} + {\rm{\;}}12\sqrt 2 }}{\rm{\;\;\;\;\;}}\) By rationalisation method ⇒ \(17{\rm{\;}} + {\rm{\;}}12\sqrt 2 {\rm{\;}} + {\rm{\;}}\frac{1}{{17{\rm{\;}} + {\rm{\;}}12\sqrt 2 }}\; \times \;\frac{{17{\rm{\;}} - {\rm{\;}}12\sqrt 2 }}{{17{\rm{\;}} - {\rm{\;}}12\sqrt 2 }}\) Use (a2 – b2) = (a – b)(a + b) ⇒ \(17 + {\rm{\;}}12\sqrt {2\;} \; + \;\frac{{17{\rm{\;}} - {\rm{\;}}12\sqrt 2 }}{{{{17}^2}\; - \;{{(12\surd 2)}^2}}}\) ⇒ \(17{\rm{\;}} + {\rm{\;}}12\sqrt {2\;} + \;\frac{{17{\rm{\;}} - {\rm{\;}}12\sqrt {2\;} \;}}{{289\; - \;288}}\) ⇒ 17 + 12√2 + 17 – 12√2 ⇒ 34 ⇒ \({x^2} + \frac{1}{{{x^2}}} = 34\;\) ∴ The value of \({x^2} + \frac{1}{{{x^2}}}\) is 34 |
|