1.

IF x = 3 + √8, find the value of \({x^3} + \frac{1}{{{x^3}}}\).1. 2162. 1983. 2004. 196

Answer» Correct Answer - Option 2 : 198

Given:

x = 3 + √8

Calculation:

as x = 3 + √8

(1/x) = 1/(3 + √8) 

Rationalising we get, (1/x) = 3 - √8

Then, x + (1/x) = 3 + √8 + 3 - √8 = 6      ----(1)

taking cube of (1) we get,

[x + (1/x)]3 = 63

x+ (1/x)3 + 3 × x × (1/x) [x + (1/x)] = 216

x+ (1/x)3 + 3 × [x + (1/x)] = 216

x+ (1/x)3 = 216 - 3 × [x + (1/x)]

x+ (1/x)3 = 216 - 3 × 6 = 198

∴ The value of x+ (1/x)3 is 198. 



Discussion

No Comment Found

Related InterviewSolutions