InterviewSolution
Saved Bookmarks
| 1. |
If \(x^4 + \dfrac{1}{x^4}=322, x \neq 0\), then one of the values of \(\left(x - \dfrac{1}{x}\right)\) is1. 62. 83. 24. 4 |
|
Answer» Correct Answer - Option 4 : 4 Given: \(x^4 + \dfrac{1}{x^4}=322, x \neq 0\) ----(1) Formula used: (a – b)2 = a2 + b2 – 2ab (a + b)2 = a2 + b2 + 2ab Calculation: (x2 + 1/x2)2 = x4 + 1/x4 + 2 ⇒ (x2 + 1/x2)2 = 322 + 2 ----(from eq (1)) ⇒ (x2 + 1/x2)2 = 324 ⇒ (x2 + 1/x2) = (324)1/2 ⇒ (x2 + 1/x2) = 18 ----(2) Now, (x – 1/x)2 = x2 + 1/x2 – 2 ⇒ (x – 1/x)2 = 18 – 2 ----(from eq (2)) ⇒ (x – 1/x) = 161/2 ⇒ (x – 1/x) = 4 ∴ The value of (x – 1/x) is 4 |
|