1.

If [(x + a)/a] + [(x + b)/b] + [(x + c)/c] = 3, and x ≥ 1 then find the value of (ab + bc + ca)?1. 22. 03. 14. 3

Answer» Correct Answer - Option 2 : 0

Given:

[(x + a)/a] + [(x + b)/b] + [(x + c)/c] = 3

Calculation:

[(x + a)/a] + [(x + b)/b] + [(x + c)/c] = 3

⇒ x/a + a/a + x/b + b/b + x/c + c/c = 3

⇒ x/a + 1 + x/b + 1 + x/c + 1 = 3

⇒ x/a + x/b + x/c + 3 = 3

⇒ (bcx + acx + abx)/abc = 3 – 3

⇒ (bcx + acx + abx)/abc = 0

⇒ [x(ab + bc + ca)]/abc = 0

As from the question x ≥ 0

∴ (ab + bc + ca) = 0



Discussion

No Comment Found

Related InterviewSolutions