InterviewSolution
Saved Bookmarks
| 1. |
If x = a sec θ cos φ, y = b sec θ sin φ and z = c tan θ, then = \(\frac{x^2}{a^2}+\frac{y^2}{b^2}\) A. \(\frac{z^2}{c^2}\) B. \(1-\frac{z^2}{c^2}\) C. \(\frac{z^2}{c^2}-1\) D. \(1+\frac{z^2}{c^2}\) |
|
Answer» Given: x a sec θ cos ϕ Squaring both sides, we get x2 = a2sec2θ cos2ϕ and y = b sec θ sin ϕ Squaring both sides, we get y2 = b2 sec2θ sin2ϕ And z = c tan θ ⇒ z2 = c2tan2θ ⇒ tan2θ = \(\frac{z^2}{c^2}\) ........(i) To find: \(\frac{x^2}{a^2}+\frac{y^2}{b^2}\) Consider \(\frac{x^2}{a^2}+\frac{y^2}{b^2}\) = \(\frac{a^2sec^2θcos^2Φ}{a^2} + \frac{b^2sec^2θsin^2Φ}{b^2}\) = sec2θ cos2ϕ + sec2θ sin2ϕ = sec2θ (cos2ϕ + sin2ϕ) = sec2θ [∵ sin2ϕ + cos2ϕ = 1] = 1 + tan2θ [∵ 1 + tan2θ = sec2θ] = \(1+\frac{z^2}{c^2}\) |
|