1.

If x = a sec θ cos φ, y = b sec θ sin φ and z = c tan θ, then  = \(\frac{x^2}{a^2}+\frac{y^2}{b^2}\) A. \(\frac{z^2}{c^2}\) B. \(1-\frac{z^2}{c^2}\) C. \(\frac{z^2}{c^2}-1\) D. \(1+\frac{z^2}{c^2}\)

Answer»

Given: x a sec θ cos ϕ 

Squaring both sides, we get 

x2 = a2sec2θ cos2ϕ 

and y = b sec θ sin ϕ

Squaring both sides, we get 

y2 = b2 sec2θ sin2ϕ 

And z = c tan θ 

⇒ z2 = c2tan2θ

⇒ tan2θ = \(\frac{z^2}{c^2}\)  ........(i)

To find: \(\frac{x^2}{a^2}+\frac{y^2}{b^2}\) 

Consider \(\frac{x^2}{a^2}+\frac{y^2}{b^2}\)  = \(\frac{a^2sec^2θcos^2Φ}{a^2} + \frac{b^2sec^2θsin^2Φ}{b^2}\)

= sec2θ cos2ϕ + sec2θ sin2ϕ 

= sec2θ (cos2ϕ + sin2ϕ) 

= sec2θ [∵ sin2ϕ + cos2ϕ = 1] 

= 1 + tan2θ [∵ 1 + tan2θ = sec2θ]

\(1+\frac{z^2}{c^2}\) 



Discussion

No Comment Found