InterviewSolution
Saved Bookmarks
| 1. |
If x cosA=8 and 15 cosecA =8secA then the value of x is? |
|
Answer» ??Wow bro ?????? Edited table : $$\\sf \\color{aqua}{Trigonometry\\: Table}\\\\ \\blue{\\boxed{\\boxed{\\begin{array}{ |c |c|c|c|c|c|} \\sf \\red{\\angle A} & \\red{\\sf{0}^{ \\circ} }&\\red{ \\sf{30}^{ \\circ} }& \\red{\\sf{45}^{ \\circ} }& \\red{\\sf{60}^{ \\circ}} &\\red{ \\sf{90}^{ \\circ}} \\\\ \\hline \\\\ \\rm \\red{sin A} & \\green{0} & \\green{\\dfrac{1}{2}}& \\green{\\dfrac{1}{ \\sqrt{2} }} &\\green{ \\dfrac{ \\sqrt{3}}{2} }&\\green{1} \\\\ \\hline \\\\ \\rm \\red{cos \\: A} & \\green{1} &\\green{ \\dfrac{ \\sqrt{3} }{2}}&\\green{ \\dfrac{1}{ \\sqrt{2} }} & \\green{\\dfrac{1}{2}} &\\green{0} \\\\ \\hline \\\\\\rm \\red{tan A}& \\green{0} &\\green{ \\dfrac{1}{ \\sqrt{3} }}&\\green{1} & \\green{\\sqrt{3}} & \\rm \\green{\\infty} \\\\ \\hline \\\\ \\rm \\red{cosec A }& \\rm \\green{\\infty} & \\green{2}& \\green{\\sqrt{2} }&\\green{ \\dfrac{2}{ \\sqrt{3} }}&\\green{1} \\\\ \\hline\\\\ \\rm \\red{sec A} & \\green{1 }&\\green{ \\dfrac{2}{ \\sqrt{3} }}& \\green{\\sqrt{2}} & \\green{2} & \\rm \\green{\\infty} \\\\ \\hline \\\\ \\rm \\red{cot A }& \\rm \\green{\\infty} & \\green{\\sqrt{3}}& \\green{1} & \\green{\\dfrac{1}{ \\sqrt{3} }} & \\green{0}\\end{array}}}}$$ $$ \\sf \\bf :longmapsto xcosA = 8$$$$\\sf \\bf :longmapsto cosA=\\dfrac{8}{x}$$Taking second equation,$$\\sf \\bf :longmapsto 15cosecA = 8secA$$$$\\sf \\bf :longmapsto 15\\dfrac{1}{sinA} = 8\\dfrac{1}{cosA}$$$$\\sf \\bf :longmapsto tanA = \\dfrac{15}{8}$$Thus, you can see using a triangle that sides are respectively, 15k, 8k, 17k$$\\sf \\bf :longmapsto cosA = \\dfrac{8}{17}$$Hence , x = 17More information:[tex]\\sf \\color{aqua}{Trigonometry\\: Table}\\\\ \\blue{\\boxed{\\boxed{\\begin{array}{ |c |c|c|c|c|c|} \\sf \\red{\\angle A} & \\red{\\sf{0}^{ \\circ} }&\\red{ \\sf{30}^{ \\circ} }& \\red{\\sf{45}^{ \\circ} }& \\red{\\sf{60}^{ \\circ}} &\\red{ \\sf{90}^{ \\circ}} \\\\ \\hline \\\\ \\rm \\red{sin A} & \\green{0} & \\green{\\dfrac{1}{2}}& \\green{\\dfrac{1}{ \\sqrt{2} }} &\\green{ \\dfrac{ \\sqrt{3}}{2} }&\\green{1} \\\\ \\hline \\\\ \\rm \\red{cos \\: A} & \\green{1} &\\green{ \\dfrac{ \\sqrt{3} }{2}}&\\green{ \\dfrac{1}{ \\sqrt{2} }} & \\green{\\dfrac{1}{2}} &\\green{0} \\\\ \\hline \\\\\\rm \\red{tan A}& \\green{0} &\\green{ \\dfrac{1}{ \\sqrt{3} }}&\\green{1} & \\green{\\sqrt{3}} & \\rm \\green{\\infty} \\\\ \\hline \\\\ \\rm \\red{cosec A }& \\rm \\green{\\infty} & \\green{2}& \\green{\\sqrt{2} }&\\green{ \\dfrac{2}{ \\sqrt{3} }}&\\green{1} \\\\ \\hline\\\\ \\rm \\red{sec A} & \\green{1 }&\\green{ \\dfrac{2}{ \\sqrt{3} }}& \\green{\\sqrt{2}} & \\green{2} & \\rm \\green{\\infty} \\\\ \\hline \\\\ \\rm \\red{cot A }& \\rm \\green{\\infty} & \\green{\\sqrt{3}}& \\green{1} & \\green{\\dfrac{1}{ \\sqrt{3} }} & \\green{0}\\end{array}}}}[/tex] 17 |
|