InterviewSolution
Saved Bookmarks
| 1. |
If \(x + \frac{1}{x} = \sqrt 3\), then the value of x18 + x12 + x6 + 1 is: |
|
Answer» Correct Answer - Option 1 : 0 Given: \(x + \frac{1}{x} = \;\surd 3\) Calculation: Taking cube both side of the equation, \({x^3} + \;\frac{1}{{{x^3}}}\; + \;3x × \frac{1}{x}\left( {x\; + \;\frac{1}{x}} \right) = 3\sqrt 3 \) ⇒ \({x^3} + \;\frac{1}{{{x^3}}} + 3\sqrt 3 = 3\surd 3\) ⇒ \(\frac{{{x^6} + 1}}{{{x^3}}}\; = \;0\) ⇒ x6 + 1 = 0 ⇒ x6 = - 1 x18 + x12 + x6 + 1 ⇒ x12(x6 + 1) + (x6 + 1) ⇒ x12 × 0 + 0 ⇒ 0 ∴ The value of x18 + x12 + x6 + 1 is 0. |
|