InterviewSolution
| 1. |
If \(x - \frac 3 x = 6,\; x \ne 0,\) then the value of \(\frac {x^4 - \frac {27}{x^2}}{x^2 - 3x - 3}\) is:1. 542. 2703. 804. 90 |
|
Answer» Correct Answer - Option 4 : 90 GIVEN: \(x - \frac 3 x = 6,\; x \ne 0,\) FORMULA USED: (a - b)2 = (a2 + b2 - 2ab), (a3 - b3) = (a - b) (a2 + b2 + ab) CALCULATION: (a - b)2 = (a2 + b2 - 2ab) ⇒ \(x - \frac 3 x = 6,\; x \ne 0,\) Squaring both sides ⇒ (x - 3/x)2 = (6)2 ⇒ x2 + 9/x2 - 6 = 36 ⇒ x2 + 9/x2 = 42 \(\frac {x^4 - \frac {27}{x^2}}{x^2 - 3x - 3}\) Divide by x into numerator and denominator \(⇒ \frac{{{x^3} - \frac{{27}}{{{x^3}}}}}{{x - 3 - \frac{3}{x}}}\) \( ⇒ \frac{{\left( {x - \frac{3}{x}} \right)\left( {{x^2} + \frac{9}{{{x^2}}} + 3} \right)}}{{\left( {x - \frac{3}{x}} \right) - 3}}\) \(⇒ \;\frac{{6 \times \left( {42 + 3} \right)}}{{6 - 3}}\) \( ⇒ \;\frac{{6 \times 45}}{3}\) ⇒ 90 ∴ \( \frac{{{x^3} - \frac{{27}}{{{x^3}}}}}{{x - 3 - \frac{3}{x}}}\) = 90 |
|