1.

If x=r sinA cosC ,y= r sinA sinC and z=r cosA,prove that r^2=x^2+y^2+z^2

Answer» X 2 + y 2 +Z 2 = R2 ( cos 2C * sin 2 C) + R2 ( sin 2A * sin 2C) + R2 cos 2A = R2 * sin 2A ( cos 2 C + sin 2 C) + R2 cos 2 A = R2 sin2A * 1 + R2 * cos 2A = R2 (sin2A + cos 2 A) =R2 * 1 X 2 + y 2 + Z 2 = R2 Hence proved Hope this may help uh!!


Discussion

No Comment Found