1.

If `x=sin t-t cos t and y = t sin t +cos t,` then what is `(dy)/(dx)` at point `t=(pi)/(2)?`

Answer» Correct Answer - A
As given:
`x=sint-t cos t and y=t sin t+cost`
On differentiating w.r.t. t, we get
`(dx)/(dt)=cost-{cost+t(-sint)}`
`rArr(dx)/(dt)=cost-cost+t sin t=t sint`
and, `(dy)/(dt)=t cost+sint-sint=t cost`
Hence, `(dy)/(dx)=(dy//dt)/(dx//dt)=(t cos t)/(t sin t)=cot t`
`rArr((dy)/(dx))_(t=(pi)/(2))=cot.(pi)/(2)=0`


Discussion

No Comment Found