1.

If `x = t^(2)` and `y = t^(3)`, then `(d^(2)y)/(dx^(2))` is equal toA. 1B. `(3)/(2t)`C. `(3)/(4t)`D. `(3)/(2)`

Answer» Correct Answer - C
Let `x=t^(2) and y=t^(3)`
`rArr" "(dx)/(dt=2t and (dy)/(dt)=3t^(2)`
`therefore" "(dy)/(dx)=(dy//dt)/(dx//dt)=(3t^(2))/(2t)=(3)/(2)t`
`rArr" "(d^(2)y)/(dx^(2))=(3)/(2).(dt)/(dx)=(3)/(2).(1)/(2t)(because(dx)/(dt)=2t)`
`=(3)/(4t)`


Discussion

No Comment Found