InterviewSolution
Saved Bookmarks
| 1. |
If `x+y=t-(1)/(t),x^(2)+y^(2)=t^(2)+(1)/(t^(2))`, what is `(dy)/(dx)` equal to?A. `(1)/(x)`B. `-(1)/(x)`C. `(1)/(x^(2))`D. `-(1)/(x^(2))` |
|
Answer» Correct Answer - C Given that `x+y=t-(1)/(t) and x^(2)+y^(2)=t^(2)+(1)/(t^(2))` `therefore" "(x+y)^(2)=x^(2)+y^(2)+2xy` `rArr" "(t-(1)/(t))^(2)=(t^(2)+(1)/(t^(2)))+2xy` `-2=2xyrArrxy=-1` `(x-y)^(2)=(x+y)^(2)-4xy` `=(t-(1)/(t))^(2)-4xx-1=t^(2)+(1)/(t^(2))-2+4=(t+(1)/(t))^(2)` `x-y=t+(1)/(t)` `rArr" "x=t, u=-(1)/(t)` `xy=-1` `rArr" "x(dy)/(dx)+y=0` `rArr" "(dy)/(dx)=-(y)/(x)=(1)/(t^(2))=(1)/(x^(2))` |
|