

InterviewSolution
Saved Bookmarks
1. |
If `x^(y)+y^(x)=a^(b)` then find `(dy)/(dx)`. |
Answer» Let `u=x^(y)andv=y^(x)` `u=x^(y)` `rArrlogu=logx^(y)=ylogx` `rArr1/ucdot(du)/(dx)=y/x+logxcdot(dy)/(dx)` `rArr(du/(dx)=u[y/x+logxcdot(dy)/(dx)]` `=x^(y)[y/x+logxcdot(dy)/(dx)]` `=ycdotx^(y-1)+x^(y)cdotlogxcdot(dy)/(dx)` and `v=y^(x)` `rArrlogv=logy^(x)=xlogy` `rArr1/v(dv)/(dx)=x/ycdot(dy)/(dx)+logycdot1` `rArr(dv)/(dx)=v(x/y(dy)/(dx)+logy)` `=y^(x)(x/y(dy)/(dx)+logy)` `=xcdoty^(x-1)cdot(dy)/(dx)+y^(x)logy` Now `x^(y)+y^(x)=a^(b)` `rArru+v=a^(b)rArr(du)/(dx)+(dv)/(dx)=0` `rArrycdotx^(y-1)+x^(y)logxcdot(dy)/(dx)` `+xcdoty^(x-1)(dy)/(dx)+y^(x)logy=0` `rArr(dy)/(dx)(x^(y)logx+xcdoty^(x-1))=-(y^(x)logy+ycdotx^(y-1))` `rArr(dy)/(dx)=(-(y^(x)logy+ycdotx^(y-1))/((x^(y)logx+xcdoty^(x-1))` Ans. |
|