1.

If \(x + y + z = 3\) and \(xy + yz + zx=-11\), then what is the value of \({x^3} + {y^3} + {z^3} - 3xyz\)?1. 1262. 1453. 1214. 154

Answer» Correct Answer - Option 1 : 126

Given:

x + y + z = 3 and xy + yz + zx = -11

Concept used:

Algebra

Calculation:

(x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx)

Using the above values in the equation,

⇒ (3)2 = x2 + y2 + z2 + 2(-11)

⇒ x2 + y2 + z2 = 22 + 9

⇒ x2 + y2 + z2 = 31

\({x^3} + {y^3} + {z^3} - 3xyz\) = (x + y + z) [(x2 + y2 + z2 - (xy + yz + zx)]

\({x^3} + {y^3} + {z^3} - 3xyz\) = (3) [(31 + 11)]

\({x^3} + {y^3} + {z^3} - 3xyz\) = 126



Discussion

No Comment Found

Related InterviewSolutions