InterviewSolution
Saved Bookmarks
| 1. |
If x2 + 4y2 = 17 and xy = 2, where x > 0, y > 0, then what is the value of x3 + 8y3?1. 852. 653. 764. 95 |
|
Answer» Correct Answer - Option 2 : 65 Given - x2 + 4y2 = 17 and xy = 2, where x > 0, y > 0 Formula used - a3 + b3 = (a + b) (a2 - ab + b2) (a + b)2 = a2 + b2 + 2ab Solution - x2 + 4y2 = 17 and xy = 2, where x > 0, y > 0 ⇒ xy = 2 then, 4xy = 8 ⇒ (x + 2y)2 = x2 + 4y2 + 4xy = 17 + 8 = 25 ⇒ (x + 2y) = 5 ⇒ x3 + 8y3 = (x + 2y) (x2 + 4y2 - 2xy) ⇒ x3 + 8y3 = (5) × (17 - 4) = 65 ∴ x3 + 8y3 = 65. Short trick - ⇒ put x = 1, y = 2 ⇒ it satisfy both the given expression. ⇒x3 + 8y3 = 13 + 8 × 23 = 65 |
|