1.

If x2 + 4y2 = 17 and xy = 2, where x > 0, y > 0, then what is the value of x3 + 8y3?1. 852. 653. 764. 95

Answer» Correct Answer - Option 2 : 65

Given - 

x2 + 4y2 = 17 and xy = 2, where x > 0, y > 0

Formula used - 

a3 + b3 = (a + b) (a2 - ab + b2)

(a + b)2 = a2 + b2 + 2ab

Solution - 

x2 + 4y2 = 17 and xy = 2, where x > 0, y > 0

⇒ xy = 2 then, 4xy = 8

⇒ (x + 2y)2 = x2 + 4y2 + 4xy = 17 + 8 = 25

⇒ (x + 2y) = 5

⇒ x3 + 8y3 = (x + 2y) (x2 + 4y2 - 2xy)

⇒ x3 + 8y3 = (5) × (17 - 4) = 65

∴ x3 + 8y3 = 65.

Short trick - 

⇒ put x = 1, y = 2

⇒ it satisfy both the given expression.

⇒x3 + 8y3 = 13 + 8 × 23 = 65



Discussion

No Comment Found

Related InterviewSolutions