1.

If x4 + x2y2 + y4 = 63, and x2 + xy + y2 = 7, then find the value of (x/y + y/x) ?1. -42. 83. -84. 4

Answer» Correct Answer - Option 3 : -8

Calculation: 

As we know that,

x4 + x2y2 + y4 = (x2 - xy +y2) (x2 + xy + y2)

According to the question

x4 + x2y2 + y4 = 63, and

x2 + xy + y2 = 7          . . .      (1)

⇒ 63 = (x2 - xy +y2) × 7

⇒ (x2 - xy +y2) = 9        . . .   (2)

Add equation (1) and (2)

⇒ 2(x2 + y2) = 16

⇒ x2 + y2 = 8

The value of (x2 + y2) put in equation (1)

⇒ xy = 7 - 8 = -1

Now, 

⇒ (x/y + y/x)

⇒ (x2 + y2)/xy

⇒ 8/-1

⇒ -8

∴ The required value is -8.



Discussion

No Comment Found

Related InterviewSolutions