

InterviewSolution
Saved Bookmarks
1. |
`"If "xy=e^((x-y))," then find "(dy)/(dx).` |
Answer» `xy = e^(x-y) " "....(1)` Differentiate both sides w.r.t.x ` x(dy)/(dx) + y * 1 = (d)/(dx)e^((x-y))` `rArr x(dy)/(dx) + y = e^((x-y)) * (d)/(dx) (x-y)` `rArr x(dy)/(dx) + y = xy(1-(dy)/(dx)) " From equation" (1)` `rArr x(dy)/(dx) + xy(dy)/(dx) = xy-y` `rArr (dy)/(dx) = (y(x-1))/(x(1+y))` |
|