1.

If y = 3e2x + 2e3x , prove that d2y/dx2 - 5dy/dx + 6y = 0

Answer»

Given that y = 3e2x + 2e3x 

Differentiating both sides w.r.t. x, we get

dy/dx = 6e2x + 6e3x = 6(e2x + e3x)

Again, Differentiating both sides w.r.t. x, we get

d2y/dx2 = 6(2e2x + 3e3x)

Now, d2y/dx2 - 5dy/dx + 6y = 6(2e2x + 3e3x) - 5(6(e2x + e3x)) + 6(3e2x + 2e3x)

= 12e2x + 18e3x - 30e2x - 30e3x + 18e2x + 12e3x = 0



Discussion

No Comment Found

Related InterviewSolutions