1.

If `y=cos^(-1)x`, find `(d^2y)/(dx^2)`in terms of `y`alone.

Answer» `y="cos"^(-1)x impliesx=cos y`
`implies(dy)/(dx)= -sin y`
`implies(dy)/(dx)= -(1)/("sin"y)= -"cosec " y`
`implies (d^(2)y)/(dx^(2))=(d)/(dx)(-"cosec " y)`
`="cosec "y" cot "y*(dy)/(dx)`
`="cosec "y" cot"y(-"cosec "y)`
`= -"cosec"^(2)y" cot "y`


Discussion

No Comment Found