1.

If `y= cot^(-1)(sqrt(1+x^2+1)/x) " then find " dy/dx`

Answer» Let x=tan theta
therefore `y=cot ^(-1)(sqrt((1+tan ^2 theta +1)/(tan theta)))`
`=cot ^(-1)((sec theta+1)/(tan theta))`
`=cot ^(-1)((1+cos theta)/(sin theta))`
`cot ^-1 ((2cos^2""theta/(2))/(2sin""theta/2cos""(theta)/(2)))=cot^(-1)(cot""theta/2)`
`=theta/2=1/2 tan ^(-1)x`
`rArr dy /dx=1/2 d/dx tan ^(-1)=(1)/(2(1+x^2))`


Discussion

No Comment Found