InterviewSolution
Saved Bookmarks
| 1. |
If `y=e^acos^((-1)x),-1lt=x |
|
Answer» `y=e^(acos^(-1)x)` `implies(dy)/(dx)=e^(acos^(-1)x)*(d)/(dx)(acos^(-1)x)` `implies (dy)/(dx)=y*((-a))/(sqrt(1-x^(2)))` `impliessqrt(1-x^(2))(dy)/(dx)= -ay` `implies(1-x^(2))((dy)/(dx))^(2)=a^(2)y^(2)` Differentiate both sides w.r.t.x `(1-x^(2))*2(dy)/(dx)*(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)(-2x)=a^(2)*2y(dy)/(dx)` Divide both sides by `2*(dy)/(dx)` `(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=a^(2)y` `(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0 " " ` Hence Proved. |
|