

InterviewSolution
Saved Bookmarks
1. |
If `y=secx+tanx` then prove that `(d^2y)/(dx^(2))=cosx/((1-sinx)^(2))`. |
Answer» `y=secx+tanx` `=1/cosx+sinx/cosx=(1+sinx)/cosx` ,brgt `rArr(dy)/(dx)=d/(dx)((1+sinx)/cosx)` `(cosxd/(dx)(1+sinx)-(1+sinx)d/(dx)cosx)/(cos^(2)x)` `=(cosx.cosx+(1+sinx).sinx)/(cos^(2)x)` `=(1+sinx)/(1-sin^2x)=1/(1-sinx)` `rArr (d^(2)y)/(dx^2)=d/(dx)(1/(1-sinx))` `=((1-sinx).d/(dx)(1)-1d/(dx)(1-sinx))/((1-sinx)^(2))` `=(0+cosx)/((1-sinx)^(2))=cosx/((1-six)^(2))` |
|