1.

If `y=sin^(-1)((4x)/(1+4x^(2)))`, then what is `(dy)/(dx)` equal to?A. `(1)/(1+4x^(2))`B. `-(1)/(1+4x^(2))`C. `(4)/(1+4x^(2))`D. `(4x)/(1+4x^(2))`

Answer» Correct Answer - C
Let` y=sin^(-1)((4x)/(1+4x^(2)))=sin^(-1)((2.2x)/(1+(2x)^(2)))`
Put `2x=tan theta rArr theta =tan^(-1)2x`
`therefore y=sin^(-1)((2tan theta)/(1+tan^(2)theta))`
`=sin^(-1)(sin2 theta)=2 theta(because sin 2 theta=(2tan theta)/(1+tan^(2)theta))`
`=2tan^(-1)2x`
On differentiating w.r.t. x, we get
`(dy)/(dx)=(2)/(1+(2x)^(2)).2=(4)/(1+4x^(2))`
ALTERNATESOLUTION
`y=sin^(-1)((4x)/(1+4x^(2)))`
`(dy)/(dx)=(1)/(sqrt(1-((4x)/(1+4x^(2)))^(2)))xx((1+4x^(2))4-4x(8x))/((1+4x^(2))^(2))`
`=(4-16x^(2))/((1+4x^(2))sqrt(1-8x^(2)+16x^(4)))`
`=(4-16x^(2))/((1+4x^(2))(1-4x^(2)))`
`=((2)^(2)-(4x)^(2))/((1+4x^(2))(1-2x)(1+2x))=((2+4x)2)/((1+4x^(2))(1+2x))=(4)/(1+4x^(2))`


Discussion

No Comment Found