

InterviewSolution
Saved Bookmarks
1. |
if `y= (sin ^(-1)x)/(sqrt(1-x^2))` then prove that `(1-x)^2) .d/dx=xy+1` |
Answer» `y=(sin^1x)/(sqrt(1-x^(2)))` `rArr dy/dx=d/dx((sin^(-1)x)/(sqrt(1-x^(2))))` `sqrt(1-x^(2))d/dxsin ^(-1)x-sin^(-1)x` `=(" ".d/dxsqrt(1-x^(2)))/((sqrt(1-x^(2)))^2)` `sqrt(1-x^(2)).(1)/(sqrt(1-x^(2)))-sin^(-1)x.(1)/(2sqrt(1-x^(2)))` `=(" "d/dx(1-x^(2)))/((1-x^(2))` `rArr (1-x^(2))dy/dx=1-(sin^(-1)x)/(sqrt(1-x^(2))).(1)/(2).(-2x)` `rArr (1-x^(2))d/dx=1 +x.y` Hence Proverd |
|