1.

If `y=sin^(-1)(x-y),x=3t,y=4t^(3)`, then what is the derivative of u with respect to t?A. `3(1-t^(2))`B. `3(1-t^(2))^(-(1)/(2))`C. `5(1-t^(2))^((1)/(2))`D. `5(1-t^(2))`

Answer» Correct Answer - B
`u=sin^(-1)(x-y)x=3t,y=4t^(3)`
So, `u=sin^(-1)(3t-4t^(3))`
Let `t=sin theta rArr theta=sin^(-1)t`,
So, `u=sin^(-1)(3sin theta-4sin^(3)theta)`
`=sin^(-1)(sin3theta)=3 theta`
Hence, `u=3sin^(-1)t`
`(du)/(dt)=3(1)/(sqrt(1-t^(2)))=3(1-t^(2))^(-1//2)`


Discussion

No Comment Found