

InterviewSolution
Saved Bookmarks
1. |
If `y=(sin x) ^(sin x ^sin x ....oo)` then prove that `dy/dx=(y^2 cot x)/(1-y log (sin x))` |
Answer» `y=(sin x) ^(sin x ^sin x ....oo)` `rArr y=(sin x)^y ` `rArr log y =log (sin x)^y=y log (sin x)` Differentiate both sides with respect to x `(1)/(y)dy/dx =y.1/sin x .d/dx sin x +log (sin x) .dy/dx ` `rArr dy/dx (1/y-log sin x )=y/sin x .cos x` `rArr dy/dx (1-y log sin x)/(y)=y cot x ` `rArr dy/dx =(y^2 cot x)/1- y log sin x` |
|