1.

If ` y = tan ^-1[x/(1+sqrt(1-x^2))] "then find" dy/dx`

Answer» Let `x=sin theta`
` therefore y=tan ^-1[(sin theta)/(1+sqrt(1-sintheta))]`
`=tan^-1[(sin theta)/(1+cos theta)]=tan ^-1[(2sin ""theta/2cos ""theta/2)/(2cos^2""theta/2)]`
`tan^-1(tan""theta/2)=theta/2=1/2sin^-1x`
`rArr dy/dx=1/2d/dxsin^-1x=1/(2sqrt(1-x^2))`


Discussion

No Comment Found