1.

If `y=x^(sin^(-1)x)` then finde `(dy)/(dx)`.

Answer» `y=x^(sin^(-1)x)`
Taking log on both sides
`logy=log(x^(sin^(-1)x)`
`=sin^(-1)xcdotlogx`
Differentiate both sides with respect to x.
`(1/y)(dy)/(dx)=sin^(-1)xcdot1/x+logxcdot1/(sqrt(1-x^(2)))`
`rArr (dy)/(dx)=ycdot[(sin^(-1)x)/x+(logx)/(sqrt(1-x^(2)))]`
`rArr(dy)/(dx)=x^(sin^(-1)x)[(sin^(-1)x)/x+(logx)/(sqrt(1-x^(2)))]`cdotAns


Discussion

No Comment Found