

InterviewSolution
Saved Bookmarks
1. |
If `y=x^(sin^(-1)x)` then finde `(dy)/(dx)`. |
Answer» `y=x^(sin^(-1)x)` Taking log on both sides `logy=log(x^(sin^(-1)x)` `=sin^(-1)xcdotlogx` Differentiate both sides with respect to x. `(1/y)(dy)/(dx)=sin^(-1)xcdot1/x+logxcdot1/(sqrt(1-x^(2)))` `rArr (dy)/(dx)=ycdot[(sin^(-1)x)/x+(logx)/(sqrt(1-x^(2)))]` `rArr(dy)/(dx)=x^(sin^(-1)x)[(sin^(-1)x)/x+(logx)/(sqrt(1-x^(2)))]`cdotAns |
|