InterviewSolution
Saved Bookmarks
| 1. |
If z1 and z2 are two complex number such that |z1| = |z2| and arg (z1) + arg (z2) = π, then show that z1 = - bar z2 |
|
Answer» Given as |z1| = |z2| and arg (z1) + arg (z2) = π Let us assume that arg (z1) = θ arg (z2) = π – θ As we know that in the polar form, z = |z| (cos θ + i sin θ) z1 = |z1| (cos θ + i sin θ) …………. (i) z2 = |z2| (cos (π – θ) + i sin (π – θ)) = |z2| (-cos θ + i sin θ) = – |z2| (cos θ – i sin θ) Then let us find the conjugate of bar z2 = – |z2| (cos θ + i sin θ) …… (ii) (since, |bar z2 = |z2|) Then, z1/bar z2 = [|z1| (cos θ + i sin θ)]/[-|z2| (cos θ + i sin θ)] = – |z1|/|z2| [since, |z1| = |z2|] = -1 Then, when we cross multiply we get, z1 = – bar z2 |
|