Saved Bookmarks
| 1. |
In ∆ABC, ∠C = 90°, ∠ABC =θ°, BC = 21 units and Ab = 29 unitsShow that : cos2– sin2 =\(\frac{41}{841}.\) |
|
Answer» Given that AB = 29 units & BC = 21 units and ∠ABC =θ°& ∠ACB = 90°. Using Pythagoras theorem in right angled triangle ∆ACB, AB2 = AC2 + BC2 ⇒ AC2 = AB2 − BC2 ⇒ AC =\(\sqrt{AB^2-BC^2}\)=\(\sqrt{29^2-21^2}\)=\(\sqrt{841-441}=\sqrt{400}\) =20 units. (∵ BC = 21, AB = 29) Now, cosθ =\(\frac{BC}{AB}=\frac{21}{29}.\)(∵ BC = 21, AB = 29) And sinθ =\(\frac{AC}{AB}=\frac{20}{29}.\)(∵ AC = 20 and AB = 29) Now, cos2θ− sin2θ =\((\frac{21}{29})^2-(\frac{20}{29})^2\)=\(\frac{21^2-20^2}{29^2}\) =\(\frac{441 \,- \,400}{841}=\frac{41}{841}.\). Hence Proved |
|