1.

In any `DeltaABC`, prove that `"a sin (B - C) + bsin(C - A) + csin(A - B)=0`.

Answer» By the sine rule, we have
`a/("sin A")=b/("sin B")=c/("sin C")`
`rArr" "("sin A")/a=("sin ")/b=("sin C")/c="k (say)"`
`rArr" sin A = ka, sin B = kb and sin C = kc"`.
Substituting the values of sin B and C and using cosine formulae, we have
`"a sin (B - C) = a(sin B cos C - cos B sin C)"`
`=a["kb"((a^(2)+b^(2)-c^(2)))/(2ab)"-kc"((c^(2)+a^(2)-b^(2)))/(2ac)]`
`=k/2[(a^(2)+b^(2)-c^(2))-(c^(2)+a^(2)-b^(2))=k(b^(2)-c^(2))]`.
Similarly, b `"sin(C - A)=b(sin C cos A - cos C sin A)"=k(c^(2)-a^(2))`.
`:." a sin(B - C)+b sin(C - A) + csin(A - B)"`
`=k(b^(2)-c^(2))+k(c^(2)+a^(2))+k(a^(2)-b^(2))`
`=k(b^(2)-c^(2)-a^(2)+a^(2)-b^(2))=kxx0=0`.


Discussion

No Comment Found