1.

In any `DeltaABC`, prove that `((a-b))/c"cos"C/2="sin"((A-B))/2`

Answer» By the sine rule, we have
`a/("sin A")=b/("sin B")=c/("sin C")="k(sya)"`
`rArr" a=k sin A, b = k sin B and c = k sin C".`
`:." LHS"=((a-b))/c"cos"C/2`
`=(("k sin A-k sin B"))/(" sin C")"cos"C/2=("k(sin A-sinB)")/("k sin C")"cos"C/2`
`=("sin A - sin B")/("sin C")"cos"C/2=("2cos"((A+B))/2"sin"((A-B))/2)/("2sin"C/2"cos"C/2)"cos"C/2" "[because("sin C- sin D")="2cos"((C+D))/2"sin"((C-D))/2]`
`=("cos"(pi/2-C/2)"sin"((A-B))/2)/("sin"C/2)" "[because(A+B)/2=(pi/2-C/2)]`
`=("sin"C/2"sin"((A-B))/2)/("sin"C/2)="sin"((A-C))/2="RHS."`
`"Hence, "((a-b))/c"cos"C/2="sin"((A-B))/2.`


Discussion

No Comment Found