1.

In any triangle `A B C ,`prove that:`(b-c)cot A/2+(c-a)cot B/2+(a-b)cot C/2`=0

Answer» By the sine rule, we have
`a/("sin A")=b/("sin B")=c/("sin C")="k (sky)"`
`rArr" "a=ksinA, b=ksin B and C=sinC.`
`:." "(b-c)cot""A/2=k(sinB-sinC)cot""A/2`
`=2kcos""((B+C))/2sin""((B-C))/2(cos(A/2))/(sin(A/2))`
`=2kcos(pi/2-A/2)sin""((B-C))/2(cos(A/2))/(sin(A/2))`
`=2ksin""A/2sin""((B-C))/2(cos(A/2))/(sin(A/2))`
`=2ksin""((B-C))/2cos""A/2`
`=2ksin((B-C))/2cos{pi/2-((B+C))/2}`
`=2ksin""((B-C))/2sin""((B+C))/2`
`=k(cosC-cosB)`.
Similarly, we have
`(c-a)cot""B/2=k(cosA-cosC)and (a-b)cos""C/2=k(cosB-cosA).`
`:." "(b-c)cos""A/2+(c+a)cos""B/2+(a-b)cot""C/2`
`=k[(cosC-cosB)+(cosA-cosC)+(cosB-cosA)]=0`.


Discussion

No Comment Found