1.

`int_(0)^(pi//2) x^(2) cos xdx` का मान ज्ञात कीजिएः|

Answer» `underset(0)overset(pi//2)int underset(I)(x^(2)) underset(II)(cos) xdx`
`=x^2underset(0)overset(pi//2)int cosdx-int [d/dxx^(2)int cos x]dx`
`=x^(2) sin x-iint [2x.sin x]dx`
`=x^(2) sin x-2[x.int sin xdx-int {d/dxx int sin xdx }dx`
`=x^(2) sin x-2[x.(-cos x)-int 1(-cos x)dx]`
`=x^(2)sin x+2x cos x-2int cos xdx`
`=x^(2)sinx+2x cos x-2 sin x`
`=x^(2) sin x+2x cos x -2 sin x`
`=(x^(2)-2)sin x+2x. cos x`
`therefore underset(0)overset(pi//2)int x^(2)cosxdx`
`=[(x^(2)-2)sin x+2x. cosx]_(0)^(pi//2)`
`=[((pi^(2))/(4)-2).sin""pi/2+2xxpi/2xxcos""pi/2]-[(0-2)sin 0+2(0) cos 0]`
`=[((pi^(2))/(4)-2).1+pi/(0)]=[0+0]`
`=(pi^2)/(4)-2`


Discussion

No Comment Found