1.

`int_(1)^(2)log_(e)xdx` किसके बराबर है ?A. `log_(e)4`B. `log_(e)2`C. `log_(e)((4)/(e))`D. `log_(e)((e)/(4))`

Answer» Correct Answer - C
माना `I=int_(1)^(2)logxdx=int_(1)^(2)underset(I)(logx)*underset(II)(1dx)`
`=[logx*x-int(1)/(x)*xdx]_(1)^(2)`
`=[xlogx-x]_(1)^(2)`
`=2log2-2-1*log1+1`
`=2log2-1-0=2log2-1`
`=log_(e)4-log_(e)e=log_(e)((4)/(e))`


Discussion

No Comment Found