InterviewSolution
Saved Bookmarks
| 1. |
`int_(1)^(3)(logx)/(x)dx` का मान ज्ञात कीजिए । |
|
Answer» माना `log x= t rArr (1)/(x)dx=dt` `{:("जब "x = 1,"तब ",t=log1=0),("जब "x=3,"तब ",t=log3):}` `therefore" "int_(1)^(3)(logx)/(x)dx=int_(0)^(log3)t dt` `=[(t^(2))/(2)]_(0)^(log3)=((log3)^(2))/(2)-(0)/(2)=((log3)^(2))/(2)` |
|