InterviewSolution
Saved Bookmarks
| 1. |
`int_(1)^(4)f(x)dx,` जहाँ `f(x)=|x-1|+|x-2|+|x-3|` का मान ज्ञात कीजिए । |
|
Answer» माना `int_(1)^(4)f(x)dx=int_(1)^(2)f(x)dx+int_(2)^(3)f(x)dx+int_(3)^(4)f(x)dx` `=int_(1)^(2){(x-1)-(x-2)-(x-3)}dx+int_(2)^(3){(x-1)+(x-2)-(x-3)}dx+int_(3)^(4){(x-1)+(x-2)+(x-3)}dx` `=int_(1)^(2)(-x+4)dx+int_(2)^(3)xdx+int_(3)^(4)(3x-6)dx` `=-[(x^(2))/(2)+4x]_(1)^(2)+[(x^(2))/(2)]_(2)^(3)+[(3x^(2))/(2)-6x]_(3)^(4)` `=((5)/(2)+(5)/(2)+(9)/(2))=(19)/(2)` |
|