1.

`int(dx)/((1-6x-9x^2)`

Answer» We have `int(dx)/((1-6x-9x^(2)))=-int(dx)/((9x^(2)+6x-1))=-(1)/(9)int(dx)/((x^(2)+(2)/(3)x-(1)/(9)))`
`=-(1)/(9)*int(dx)/({(x^(2)+(2)/(3)x+(1)/(9))-(2)/(9)})`
`=-(1)/(9)*int(dx)/({(x+(1)/(3))^(2)-((sqrt(2))/(3))^(2)})=(1)/(9)*int(dx)/({((sqrt(2))/(3))^(2)-(x+(1)/(3))^(2)})`
`=(1)/(9)*int(dx)/({((sqrt(2))/(3))^(2)-t^(2)}),"where"(x+(1)/(3))=t`
`=(1)/(9)*(1)/(2*(sqrt(2))/(3))log|(sqrt(2)/(3)+t)/(sqrt(2)/(3)-t)|+C=(1)/(6sqrt(2))log|(sqrt(2)+3t)/(sqrt(2)-3t)|+C`
`=(1)/(6sqrt(2))log|(sqrt(2)+3(x+(1)/(3)))/(sqrt(2)-3(x+(1)/(3)))|+C`
`=(1)/(6sqrt(2))log|(sqrt(2)+1+3x)/(sqrt(2)-1-3x)|+C`.


Discussion

No Comment Found