1.

`int(logx)^(2)dx=?`A. `(2logx)/(x)+C`B. `(1)/(3)(logx)^(3)+C`C. `x(logx)^(2)-2xlogx+2x+C`D. `x(logx)^(2)-2xlogx-2x+C`

Answer» Correct Answer - C
`I={underset(I)((logx)^(2))*underset(II)(1)}dx=(logx)^(2)*x-int(2logx)/(x)*xdx`
`=x(logx)^(2)-2intlogxdx=x(logx)^(2)-2[x(logx-1)]+C`.


Discussion

No Comment Found