1.

`int_(pi//4)^(pi//2)e^(x)(logsinx+cotx)dx` का मान हैA. `e^(pi//4)log2`B. `-e^(pi//4)log2`C. `(1)/(2)e^(pi//4)log2`D. `-(1)/(2)e^(pi//4)log2`

Answer» Correct Answer - D
`I=int_(pi//4)^(pi//2)e^(x)(logsinx+cotx)dx`
`=[e^(x)logsinx]_(pi//4)^(pi//2)-int_(pi//4)^(pi//2)cotx dx+int_(pi//4)^(pi//2)e^(x)cotxdx`
`=[e^(x)logsinx]_(pi//4)^(pi//2)`
`=[e^(pi//2)log1-e^(pi//4)logsqrt(2)]`
`=-(1)/(2)e^(pi//4)log2`


Discussion

No Comment Found