InterviewSolution
Saved Bookmarks
| 1. |
`int(sqrt(16+(logx)^(2)))/(x)dx=?` |
|
Answer» Putting log `x=t and (1)/(x)dx=dt` we get `I=intsqrt(16+t^(2))dt=intsqrt(4^(2)+t^(2))dt` `=(t)/(2)sqrt(16+t^(2))+(16)/(2)log|t+sqrt(16+t^(2))|+C` `=(1)/(2)logx*sqrt(16+(logx)^(2))+8 log|logx+sqrt(16+(logx)^(2))|+C`. |
|