1.

`int(sqrt(16+(logx)^(2)))/(x)dx=?`

Answer» Putting log `x=t and (1)/(x)dx=dt` we get
`I=intsqrt(16+t^(2))dt=intsqrt(4^(2)+t^(2))dt`
`=(t)/(2)sqrt(16+t^(2))+(16)/(2)log|t+sqrt(16+t^(2))|+C`
`=(1)/(2)logx*sqrt(16+(logx)^(2))+8 log|logx+sqrt(16+(logx)^(2))|+C`.


Discussion

No Comment Found