InterviewSolution
Saved Bookmarks
| 1. |
Let `f:(0,oo)to R` be a continuous function such that `F(x)=int_(0)^(x^(2)) tf(t)dt. "If "F(x^(2))=x^(4)+x^(5),"then "sum_(r=1)^(12) f(r^(2))=`A. 216B. 219C. 222D. 225 |
|
Answer» Correct Answer - B It is given that f is continuous. Therefore, the integral function f(x) is differentiable. Also, `F(x)=underset(0)overset(x)int t(f(t)dt` `F(x^(2))=underset(0)overset(x^(2))int t(f(t)dt` `x^(4)+x^(5)=underset(0)overset(x^(2))int t(f(t)dt` Differentiating with respect to x, we get `4x^(3)+5x^(4)=(2x)x^(2)f(x^(2))` `Rightarrow f(x^(2))=2+(5)/(2)x` `Rightarrow f(r^(2))=2+(5)/(2)r` `Rightarrow underset(r=1)overset(12)sum f(r^(2))=underset(r=1)overset(12)sum (2+(5)/(2)r)=24+(5)/(2)xx78=219` |
|