1.

Let `f(x)=(log(1+x/a)-log(1-x/b))/x , x!=0`. Find the value of `f`at `x=0`so that `f`becomes continuous at `x=0`.

Answer» `lim_(x->0)f(x)=f(0)`
`lim_(x->0)(log(1+(x/a))-log(1-(x/b)))/x`
`lim_(x->0)((1/(1+(x/a)))*1/a-1/(1-(x/b))*-1/b)/1`
`=1/1*1/a+1/1*1/b`
`lim_(x->0)f(x)=1/a+1/b`.


Discussion

No Comment Found

Related InterviewSolutions