

InterviewSolution
Saved Bookmarks
1. |
Let `f(x)=[t a n x[cot x]],x [pi/(12),pi/(12)]`, (where [.] denotes the greatest integer less than orequal to`x`). Then the number of points, where `f(x)`is discontinuous isa. oneb. zero``c. threed. infiniteA. oneB. zeroC. threeD. infinite |
Answer» Correct Answer - C We `x in I`. `rArr" "tanx[cotx]=1` `rArr" "[tanx[cotx]lt1` When, `x in I`, `[cotx]ltcotx` `rArr" "0 lt tanx[cotx]lt1` `rArr" "[tanx[cotx]]=0` `rArr" "f(x)=[tanx[cotx]]={{:(1",",cotx in I),(0",",cot x cancelinI):}` So, f(x) is discontinuous when `cot x in I` Now `(pi)/(12)le x lt(pi)/(2)` `rArr" "0 lt cot x le2+sqrt3` Hence, number of points of discontinuity are `x=cot^(-1)3, cot^(-1)2` and `cot^(-1)1=(pi)/(4)`. Thus three points of discontinuity. |
|