1.

Let y be an implicit function of x defined by `x^(2x) -2x^xcoty-1=0`.Then y (1) equals`

Answer» at x= 1`1-2 xx1 cot y - 1 = 0`
`cot y =(1-1)/-2 = 0`
`y= pi/2`
`y = x^(2x) `
`ln y = 2x ln x `
`d(v v )/dx = v (dv)/dx + v (dv)/dx`
so,`1/y dy/dx = 2 ln x + 2`
`dy/dx= 2y(ln x+1) `
`= 2x^(2x) [ln x +1]`
`x^(2x) - 2x^xcot y - 1 = 0`
`2x^(2x) (ln x+1) - 2[ x^x(ln x + 1)cot y + x^x(-cosec^2 y)dy/dx]= 0`
x=1; `2 xx 1(0+1) - 2[ 1 xx1xx0 + 1(-1) dy/dx] = 0`
`2 + 2 dy/dx = 0`
`dy/dx = -2/2 = -1`
option 1 is correct


Discussion

No Comment Found