

InterviewSolution
Saved Bookmarks
1. |
`(log x)^(log x),x gt1` |
Answer» Let `y=(log x)^(log x)` `implieslogy=log[(log x)^(log x)]=logx*log(logx)` Differentiate both sides w.r.t. x `(1)/(y)(dy)/(dx)=logx*(d)/(dx)log(logx)+log(logx)(d)/(dx)logx` `=logx*(1)/(logx)*(d)/(dx)logx+log(logx)*(1)/(x)` `implies (dy)/(dx)=y[(1)/(x)+(1)/(x)log(logx)]` `=(logx)^(logx)[(1)/(x)+(1)/(x)log(logx)]` |
|