1.

Mark the tick against the correct answer in the following:\(\begin{vmatrix} cos 70^\circ & sin 20^\circ\\[0.3em] sin 70^\circ & cos 20^\circ \\[0.3em] \end{vmatrix}\) = ?A. 1B. 0C. cos 50°D. sin 50°

Answer»

Correct answer B. 0

To find: value of \(\begin{vmatrix} cos 70^\circ & sin 20^\circ\\[0.3em] sin 70^\circ & cos 20^\circ \\[0.3em] \end{vmatrix}\)

Formula used: (i) cos\(\theta\) = sin(90 - \(\theta\))

We have \(\begin{vmatrix} cos 70^\circ & sin 20^\circ\\[0.3em] sin 70^\circ & cos 20^\circ \\[0.3em] \end{vmatrix}\)

On expanding the above, 

⇒ {cos 70°} {cos 20°} – {sin 70°} {sin 20°} 

On applying formula  cos\(\theta\) = sin(90 - \(\theta\) ) 

⇒ {sin (90 – 70)} {sin (90 – 20)} - {sin 70°} {sin 20°} 

⇒ {sin 20°} {sin 70°} - {sin 70°} {sin 20°} 

= 0



Discussion

No Comment Found