InterviewSolution
 Saved Bookmarks
    				| 1. | 
                                    Please answer ex -6.3 question no.10 page no.140... | 
                            
| Answer» Class 10 Maths Exercise 6.310. CD and GH are respectively the bisectors of\xa0ACB and\xa0EGF such that D and H lie on sides AB and FE at\xa0ABC and\xa0EFG respectively. If\xa0ABC\xa0FEG, show that:(i)\xa0(ii)\xa0DCB\xa0HE(iii)\xa0DCA\xa0HGFAns.\xa0We have,\xa0ABC\xa0\xa0FEG\xa0A =\xa0F………(1)And\xa0C =\xa0G\xa0C =\xa0G\xa01 =\xa03 and\xa02 =\xa04 ……….(2)[CD and GH are bisectors of\xa0C and\xa0Grespectively]\xa0In\xa0s DCA and HGF, we haveA =\xa0F[From eq.(1)]2 =\xa04[From eq.(2)]\xa0By AA-criterion of similarity, we haveDCA\xa0\xa0HGFWhich proves the (iii) partWe have,DCA\xa0\xa0HGF\xa0Which proves the (i) partIn\xa0s DCA and HGF, we have1 =\xa03[From eq.(2)]B =\xa0E[\xa0DCB\xa0\xa0HE]Which proves the (ii) part | |