1.

Prive that the area ofcircular path of uniform width h sourrounded a region of radius r πh(2r+h)

Answer» Given,radius of inner circle = rwidth of path = hThen radius of outer circle = R= r + h{tex}\\therefore {/tex}\xa0Area of path = Area of outer circle - Area of inner circle{tex} = \\pi {(R)^2} - \\pi {(r)^2}{/tex}{tex} = \\pi {(r + h)^2} - \\pi {r^2}{/tex}{tex} = \\pi ({r^2} + {h^2} + 2rh) - \\pi {r^2}{/tex}{tex} = \\pi {r^2} + \\pi {h^2} + 2\\pi rh - \\pi {r^2}{/tex}{tex} = \\pi {h^2} + 2\\pi rh{/tex}{tex}= \\pi h(h + 2r){/tex}


Discussion

No Comment Found