1.

Prove:sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1

Answer»

From trig. Identities we have, 

sec2 θ − tan2 θ = 1 

On cubing both sides, 

(sec2θ − tan2θ)3 = 1

sec6 θ − tan6 θ − 3sec2 θ tan2 θ(sec2 θ − tan2 θ)= 1 

[Since, (a – b)3 = a3 – b3 – 3ab(a – b)] 

sec6 θ − tan6 θ − 3sec2 θ tan2 θ = 1 

⇒ sec6 θ = tan6 θ + 3sec2 θ tan2 θ + 1 

Hence, L.H.S = R.H.S 

Hence proved



Discussion

No Comment Found