InterviewSolution
Saved Bookmarks
| 1. |
Prove:sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1 |
|
Answer» From trig. Identities we have, sec2 θ − tan2 θ = 1 On cubing both sides, (sec2θ − tan2θ)3 = 1 sec6 θ − tan6 θ − 3sec2 θ tan2 θ(sec2 θ − tan2 θ)= 1 [Since, (a – b)3 = a3 – b3 – 3ab(a – b)] sec6 θ − tan6 θ − 3sec2 θ tan2 θ = 1 ⇒ sec6 θ = tan6 θ + 3sec2 θ tan2 θ + 1 Hence, L.H.S = R.H.S Hence proved |
|